
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Hybrid MetaHeuristic Feature Extraction
Technique for Solving Timetabling Problem

Olabiyisi Stephen O., Fagbola Temitayo M., Omidiora Elijah O. and Oyeleye Akin C.

(Only author names, for other information use the space provided at the bottom (left side) of first page or last page. Don’t superscript numbers for authors)

Abstract— In this paper, a hybrid algorithm that combines extracted features of two well known metaheuristics, Simulated Annealing (SA)

and Genetic Algorithm (GA) is proposed. In the proposed algorithm, useful features of each metaheuristic are exploited to obtain better

solutions for the automatic generation of examination timetable. A performance evaluation of the proposed algorithm was carried out. The

computational results illustrate the ability of the hybrid algorithm to provide good quality solutions to the examination problem instances

within reasonable computation time.

Index Terms— Feature Extraction, Genetic Algorithm, Simulated Annealing, Examination Timetabling Problem.

——————————  ——————————

1 INTRODUCTION

N educational timetabling is a multi-dimensional and
highly constrained problem. Examination timetabling
problem can be defined to be the problem of assigning a

number of events into a limited number of time periods. Burke
[1] defines timetabling as follows. ―Timetabling is the alloca-
tion, subject to constraints, of given resources to objects being
placed in space time, in such a way as to satisfy as nearly as
possible a set of desirable objectives.‖
University Examination Timetable Problem is NP complete
problem and has received tremendous attention from discip-
lines like Operations Research and Artificial Intelligence dur-
ing past few years given its wide use in universities [2]. Ex-
amination scheduling is a very important process in Educa-
tional Institutions.
The main challenge is to schedule examinations to timeslots
and rooms over a specific time period while satisfying a set of
constraints. These constraints are normally divided into hard
and soft. Hard constraints must be satisfied for the timetable
to be feasible, such as candidate examination clashes. Soft con-
straints must be satisfied as much as possible, such as satisfy-
ing special request by candidates or invigilators. However, the
more soft constraints are satisfied the better the quality of the
timetable.
Examinations must be scheduled so that no student has more
than one examination at a time. Generating educational time-
tables manually often involves numerous rounds of changes
before they can be satisfactory. The problem becomes even
more difficult when student number rises which makes auto-
mated system a necessary tool.
The examination timetabling problems can be classified in
terms of the specific solution techniques used. The common
solution techniques used in timetabling research are graph
coloring heuristics, mathematical programming, tabu search,
simulated annealing, genetic algorithms, network flow mod-
els, and constraint programming [3].
However, Genetic Algorithms (GA) and Simulated Annealing
(SA) have emerged as the leading methodologies for search
and optimization problems in high dimensional spaces. Pre-
vious attempts at hybridizing these two algorithms have been
cumbersome and required major changes to both.
Over the last decade, Genetic Algorithms (GA) have emerged as
a leading tool for optimization of arbitrary functions and for

guided search problems in high dimensional spaces. GA's are
typically comprised of two types of operations: mutation and
crossover which are repeatedly applied to a population of
chromosomes, each of which encodes a possible solution to the
given problem. GA's have been successfully applied to many
theoretical optimization problems and several industrial ap-
plications.
GA is not very efficient because of its need to maintain a large
population of solutions and this may consume several mega-
bytes of memory for the encoding of a single solution and thus
not as good as SA in this regard. It would be impractical to
manipulate a large population of candidate solutions using
GA. Another problem frequently found in GA optimization is
premature convergence. This is typically the result of the ex-
treme reliance on crossover. The dominance of crossover can
result in stagnation as the population becomes more homoge-
neous, and the mutation rate is too low to move the search to
other areas.
Simulated Annealing (SA) is another algorithm which is popu-
lar in heuristic optimization. SA belongs to a class of algo-
rithms called probabilistic hill-climbing which dynamically alter
the probability of accepting inferior solutions. The SA algo-
rithm is especially popular in the field of VLSI design where it
has been successfully applied to the optimization of extremely
high-dimensional problems which contain tens or hundreds of
thousands of parameters to be optimized.

Simulated annealing is a search strategy which keeps track of
one feasible timetable. On each iteration, a neighbour is gener-
ated – another feasible timetable, slightly altered at random
from the current one. This neighbour is accepted as the current
timetable if it has a lower penalty. If the neighbour has a high-
er penalty, it may be accepted according to a probability
which is related to a control parameter called temperature.
The temperature, and thus the probability of inferior neigh-
bours being accepted, is decreased each iteration or (more
usually) after a particular number of iterations (this number
may be constant or it can increase as the temperature decreas-
es). The process is analogous to the cooling process in actual
annealing. One drawback with simulated annealing is that the
cooling process can take a long time in order to achieve good
results.

A

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

However, SA obtains very good solutions, only if its parame-
ters are well tuned. SA requires an initial solution for solving
NP complete, combinatorial and optimization problems for
the resultant solution to be satisfactory and this is a major li-
mitation of the SA algorithm. Since neither of the two algo-
rithms seems to be universally preferred for all problems, re-
searchers have often resorted to building a large battery of
optimization algorithms and finding, through experimenta-
tion, which tool satisfactorily fits the problem at hand. This
provides the basic motivation for trying to merge GA and SA
into a single algorithm or module, which can be designed and
configured as the hybrid mode of GA and SA.
In this paper, a new method that hybridizes genetic algorithm
and simulated annealing algorithm (GA-SA Hybrid) is pro-
posed, designed and implemented for the automatic genera-
tion of tertiary institution examination time-tabling structure.

2 REVIEW OF RELATED WORKS

Several works have approached the timetabling problem. Oye-
leye [4] developed a SAGA hybrid algorithm by using the ini-
tial temperature and cooling rate of SA to control the opera-
tions of the GA. The hybrid system was evaluated using cer-
tain evaluation metrics including the program size, simulation
time, program volume, program level, program effort and
lines of code. The researcher concluded that the hybrid system
developed returned feasible examination timetable that re-
sulted in best performance when compared with GA and SA
models. Mushi [5] worked on simulated annealing algorithm
for the examinations timetabling problem at University of Dar
es salaam, based on a Simulated Annealing heuristic. Mushi
was able to solve an existing problem and show that the au-
tomated system performs better and faster than the manually
generated solution.
Dimopoulou & Milliotis [6] reported a system which combines
both Integer Programming and heuristic procedures for
Athens University of Economics and Business. Several re-
searchers have attempted this problem using simulated an-
nealing including [7], [8]. Tabu search methods have also been
used by many researchers such as [9], [10] and [11]. There are
also researches on the use of evolutionary algorithms [12] and
constraint satisfaction methods [13].
A more thorough survey of Examinations timetabling prob-
lems is provided by [14]. Most of the papers however, are
theoretical and only few present a practical implementation of
the Examination timetable for specific Universities. Some of
these few case studies include [7], [9] and [15].
Analyzing the results obtained by the various works pub-
lished, we can say that the automatic generation of schedules
is capable of achieving. Some works showed that when com-
pared with the manually scheduled examination timetables in
institutions of learning, the time tables obtained by the algo-
rithms for solving the examination timetabling problem are of
better quality using some function of evaluation.

3 MATERIALS AND METHOD

3.1 Framework for the Examination Timetable

The examination timetabling problem can be seen as consist-
ing of two subproblems:

(1) Assigning timeslots to an examination
(2) Assigning an examination to appropriate venues

 or theatres.
The examination timetabling problem is subject to a variety of
hard and soft constraints. Hard constraints need to be satisfied
in order to produce a feasible solution.
In this problem, in order for a timetable to be feasible, it is ne-
cessary that every exam event e1,…,en is assigned to exactly
one room r1,…,rm and exactly one of t timeslots (where in all
cases t ≤ 36, which is to be interpreted as twelve days of three
timeslots), such that the following three hard constraints are
satisfied: Constraints that will be considered include:

3.1.1 Hard Constraints

i.) No student is required to attend more than one
event at any one time (or, in other words, conflict-
ing exam events should not be assigned to the
same timeslot);

ii.) All exam events are to be assigned to suitable
rooms. That is, all of the features required by an
exam event are satisfied by its room, which must
also have an adequate seating capacity;

iii.) Only one exam event is assigned to any one
room in any timeslot (i.e. no double-booking of
rooms is allowed).

3.1.2 Soft Constraints
i.) Candidates prefer to have at least one gap between.
 In general, we would like to spread each candi
 date examinations as much as possible within the
 planning horizon.
ii.) Splitting of examinations into rooms must be
 minimized as much as possible. This is done in
 order to help departments in planning for
 invigilators who are also scarce.

3.2 Representation Model for the Exam Timetable

Definition

H - Set of all the periods of time within which examinations
can occur. where m corresponds to the max-
imum number of periods of time.

Definition

D - Set of all subjects, in a given season, that will be under ex-
amination.

where k is the maximum number of sub-
jects, in a given season will be under examination.

3.3 Objective Function

This is represented as a weighted linear combination of func-
tions associated with all constraints in the problem. For faster
execution, it has been observed that it is better to include hard
constraints as well in the objective function and assign higher

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

weight to their functions.
Thus, given a solution x, and a set of h constraints, we minim-
ize the function;

 (x)

(1)
where fi = function associated with constraint i and i= weight
given to constraint i which represents the importance of the
constraint to the overall performance measure of the solution.

3.4 Constraint Functions

i.) A candidate can have at most one examination at the
same timeslot; Two examinations i and j have a can-
didate clash if they have been allocated to the same
timeslot (i.e. si = sj) and mij = 1. We need a function to
count the number of these clashes whenever they ap-
pear in a particular solution and aim at minimizing
them.
Let A = Set of all pairs of examinations (i,j) є E with
i < j such that si=sj, and define fi(s) = ,
then minimize ifi(s) fi (s) gives the total number of
candidate clashes associated with the current solu-
tion, and therefore fi (s) = 0 is a necessary condition
for a feasible solution. Since this is a hard constraint,

i must be a sufficiently large value.

ii.) Room capacities must not be violated;

A room cannot be allocated to more candidates than
its capacity in any time slot. In this case we need a
function to count the number of times that the con-
straint is violated. That is, calculate the number of
times that a room has been assigned more candidates
than its capacity. Let Bit = a set of examinations as-
signed to room i at timeslot t, then the remaining ca-
pacity of room i in time t is given by

 f

(2)

For feasibility, the capacity of room i must be ≥ 0.
Also let

for some room i.
Then the function is

 ,

(3)

and minimize 2f2(s), where 2 is a large value. Since
f2(s) is the total number of rooms with an overflow of
candidates, then the condition f2(s) = 0 must be satis-
fied for a feasible solution.

iii.) Minimal number of examination splits into separate rooms;

This is achieved by simply minimizing the maximum size of ki.

Thus, the function f3(S) = maxiєE{|ki|} is minimized to 3f3(s)
where 3 is a weight value.

The general algorithm is demonstrated by the following pseu-
docode;

Initial_Examination_Timetable
Phase 1
For each examination c slotted = Assign timeslot and room
to examination c
if Not slotted
Put in the list U of unslotted examinations
Next c
Phase 2
For each unslotted examination uєU
Assign portions of u into the emptiest space until all is
scheduled.
If infeasible assign to the closest feasible timeslot.
Next u
End_Initial_Timetable

3.5 A Framework for the Hybrid GA-SA Algorithm

At the point of convergence of the evaluation function of both
the GA and SA comes the integration and model design of the
hybrid using certain features. Two solutions are selected with
a decreasing probability of selecting less-fitted feature solu-
tions. In order to decrease the probability of selecting less-
fitted features, the fitness evaluation function is changed to the
following:
 fi = (DMAX - Di)

α×t (4)

where t is the number of iterations or generations. As the
number of generation increases, the fitness value would in-
crease and induce the algorithm to choose better-fitted solu-
tions. The mutation rate would decrease as the number of
generations grows.
This is formulated as follows:

 Cm = 1 – t / tmax (5)
where t is the number of iterations or generations that the al-
gorithm has gone through and tmax is the maximum number of
generations.
If the produced offspring is less-fitted than the worst solution
in the population, it would replace the worst solution only
when the probability
 δ ≤ e

(-ΔE /T) is met.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 1. Flow of GA

Fig. 2. Flow of SA

Fig. 3. Flow of hybrid of GA and SA

3.6 Simulation Parameters
3.6.1 Violations of the Examination Timetabling
Course clashing, venue capacity, venue with lab equipment,
list of courses, total number of students per course, list of ve-
nues and capacity of venues

3.6.2 Parameters for GA-SA
Number of generations = 1000, size of population = 100,
chromosome length = 54 (54 timeslots in a week), mutation
probability = 0.1, crossover probability = 0.7, Length of mar-
kov chain = 10000, maximum temperature = 100, alpha = 0.95,
freezing point = 0.1.

3.7 Implementation Tool
The programming tool used to implement the algorithms is
MATLAB. This is because MATLAB is a very powerful com-
puting system for handling the calculations involved in scien-
tific and engineering problems. The name MATLAB stands for
MATrix LABoratory. With MATLAB, computational and
graphical tools to solve relatively complex science and engi-
neering problems can be designed, developed and imple-
mented. The timetabling problem follows LAUTECH timeta-
ble dataset format and will be used to evaluate the perfor-
mance of the developed hybrid GA-SA system.

4 RESULTS AND DISCUSSION

From the summary of the results obtained from the simula-
tion, simulated annealing algorithm performs better than both
the genetic algorithm and the hybrid GA-SA algorithm in
terms of optimality of output generated.
However, simulation results showed that simulated annealing
algorithm spends a more considerable time to generate the
timetable than the other two algorithms which accounts for
the optimality of the timetable generated as almost all hard
constraints are satisfied.
The genetic algorithm on the other hand spends a lesser time
than the simulated annealing algorithm during the generation
process but does that by violating some hard constraints.
As computing resource is very expensive, there occurs a need
to reduce the time and space complexities inherent in the use
of algorithms, hence a need for a more time-enhanced algo-
rithm which came as the hybrid GA-SA algorithm. The hybrid
GA-SA, though violated some hard constraints as observed in
the GA result also, executes with reduced time for generating
the output. It is the most efficient algorithm in terms of time
and space complexities and computing resource management
though optimality of result is not guaranteed. However, the
simulated annealing algorithm consumes a lot of computing
resource but ensures optimality of output generated.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig. 4. Hybrid GA-SA during execution

Fig. 5. Hybrid GA-SA Execution Completion

Fig. 6. GA Timetable Generated

Fig. 7. SA Timetable Generated

Fig. 8. Hybrid GA-SA Timetable Generated

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

TABLE 1
SUMMARY OF RESULTS OBTAINED

5 CONCLUSION

As computing resources become very expensive, there
arises a need to reduce the time and space complexities
inherent in the use of algorithms, hence a need for a more
time and spaced-enhanced algorithm which came as the
hybrid GA-SA algorithm as proposed in this study. Simu-
lated annealing and genetic algorithm have been success-
fully used for solving the examination timetabling prob-
lem. However, the results generated indicates a very high
consumption of computing resources by simulated an-
nealing but with high optimality while genetic algorithm
results showed that though the consumption of compu-
ting resources is reduced yet the two algorithms still con-
sume a considerable part of the computing resources.
This study designed a hybrid GA-SA algorithm which
presents an output with a well minimized utilization of
computing resources. A performance evaluation was car-
ried out among the three algorithms. The result of the
evaluation revealed that in terms of optimality of result
without taking cognizance of the time and space complex-
ities, simulated annealing is the best of the three. In addi-
tion, based on computing resource management, the hybr-
id GA-SA algorithm is the best of the three algorithms
under such consideration.

REFERENCES

[1] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu (2007),

―A Graph-Based Hyper-Heuristic for Educational Timetabling Prob-

lems,‖ European Journal of Operational Research, 176, 177-192

[2] Abdullah, S., Ahmadi, S., Burke, E. K., and Dror, M., (2007), ―Investi-

gating Ahuja-Orlin’s Large Neighborhood Search Approach for Ex-

amination Timetabling,‖ OR Spectrum, 29, 351-372.

[3] M. Henz, and J. Würtz (1996), ―Constraint-Based Timetabling- A

Case Study,‖ Applied Artificial Intelligence, 10, 439-453

[4] C. A. Oyeleye (2012), ―Development of a Hybrid Model for Solving

Examination Timetabling Problem,‖ Unpublished PhD Thesis, De-

partment of Computer Science, LAUTECH, Ogbomoso, Nigeria.

[5] Mushi A. R., (2007), ―Simulated Annealing Algorithm for the Exami-

nation Timetabling Problem,‖ AJST, Vol. 8, No. 2: December 2007.

[6] M. Dimopoulou, P. Milliotis (2001), ―Implementation of a University

Course and Examination Timetabling System,‖ European Journal of

Operational Research, Vol. 130, pp. 202-213.

[7] J. Thomson, K. Dowsland (1998), ―A Robust Simulated Annealing
Based Examination Timetabling System,‖ Computers & Operations Re-

search, Vol. 25, No. 7/8, pp. 637-648.

[8] T. Duong, K. Lam (2004), ―Combining Constraint Programming and

Simulated Annealing of University Exam Timetabling,‖ 2nd Interna-

tional Conference, Associating Enquiring Vietnamese and French speaking

people in Data Processing (RIV’04), February 2-5, Hanoi, Vietnam.

[9] G. Kendall, N. Hussin (2004), ―Tabu Search Hyperheuristic Approach

to the Examination Timetabling Problem at University Technology,‖

MARA. Proceedings of the 5th International Conference on Practice and

Theory of Automated Timetabling (PATAT’04), Pittsburg, PA, USA.

[10] G. White, B. Xie, S. Zonjic (2004), ―Using Tabu Search with longer-

term memory and relaxation to create examination timetables,‖ Euro-

pean Journal of Operational Research, 153 pp. 80-91.

[11] L. Gaspero (2002), ―Recolor, Shake and Kik: a recipe for the Examina-
tion Timetabling Problem,‖ In Burke E., Causmaecker P. (Eds.): Pro-
ceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling, August, pp. 404-407.

[12] L. Paquete, C. Fonseca (2001), ―A Study of Examination Timetabling

with Multiobjective Evolutionary Algorithms,‖ MIC’2001 – 4th Meta-
heuristics International Conference, Porto, Portugal, July 16-20, pp. 149-
153.

[13] H. Terashima, P. Ross, M. Valenzuela (1999), ―Evolution of Con-
straint Satisfaction Strategies in Examination Timetabling,‖ In W.

Banzhaf et al (Eds.) Proceedings of the GECCOE-99, Genetic and Evolu-
tionary Computation Conference, pp. 635-642, Morgan Kaufmann.

[14] P. Cowling, G. Kendall, N. Hussin (2002), ―A survey and case study
of Practical Examination Timetabling Problems,‖ Proceedings of the 4th
International Conference on Practice and Theory of Automated Timetabling

(PATAT 2002), Gent, pp. 258-261.
[15] M. Carter, G. Laporte, J. Chinneck (1994), ―Features for Contraint

Programming,‖ Interfaces, Vol. 24, 3, May-June, pp. 109-120.

