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Abstract— In this paper, a hybrid algorithm that combines extracted features of two well known metaheuristics, Simulated Annealing (SA) 

and Genetic Algorithm (GA) is proposed. In the proposed algorithm, useful features of each metaheuristic are exploited to obtain better 

solutions for the automatic generation of examination timetable. A performance evaluation of the proposed algorithm was carried out. The 

computational results illustrate the ability of the hybrid algorithm to provide good quality solutions to the examination problem instances 

within reasonable computation time. 

Index Terms— Feature Extraction, Genetic Algorithm, Simulated Annealing, Examination Timetabling Problem.   

——————————      —————————— 

1 INTRODUCTION                                                                     

N educational timetabling is a multi-dimensional and 
highly constrained problem. Examination timetabling 
problem can be defined to be the problem of assigning a 

number of events into a limited number of time periods. Burke 
[1] defines timetabling as follows. ―Timetabling is the alloca-
tion, subject to constraints, of given resources to objects being 
placed in space time, in such a way as to satisfy as nearly as 
possible a set of desirable objectives.‖ 
University Examination Timetable Problem is NP complete 
problem and has received tremendous attention from discip-
lines like Operations Research and Artificial Intelligence dur-
ing past few years given its wide use in universities [2]. Ex-
amination scheduling is a very important process in Educa-
tional Institutions.  
The main challenge is to schedule examinations to timeslots 
and rooms over a specific time period while satisfying a set of 
constraints. These constraints are normally divided into hard 
and soft. Hard constraints must be satisfied for the timetable 
to be feasible, such as candidate examination clashes. Soft con-
straints must be satisfied as much as possible, such as satisfy-
ing special request by candidates or invigilators. However, the 
more soft constraints are satisfied the better the quality of the 
timetable. 
Examinations must be scheduled so that no student has more 
than one examination at a time. Generating educational time-
tables manually often involves numerous rounds of changes 
before they can be satisfactory. The problem becomes even 
more difficult when student number rises which makes auto-
mated system a necessary tool. 
The examination timetabling problems can be classified in 
terms of the specific solution techniques used. The common 
solution techniques used in timetabling research are graph 
coloring heuristics, mathematical programming, tabu search, 
simulated annealing, genetic algorithms, network flow mod-
els, and constraint programming [3]. 
However, Genetic Algorithms (GA) and Simulated Annealing 
(SA) have emerged as the leading methodologies for search 
and optimization problems in high dimensional spaces. Pre-
vious attempts at hybridizing these two algorithms have been 
cumbersome and required major changes to both. 
Over the last decade, Genetic Algorithms (GA) have emerged as 
a leading tool for optimization of arbitrary functions and for 

guided search problems in high dimensional spaces. GA's are 
typically comprised of two types of operations: mutation and 
crossover which are repeatedly applied to a population of 
chromosomes, each of which encodes a possible solution to the 
given problem. GA's have been successfully applied to many 
theoretical optimization problems and several industrial ap-
plications.  
GA is not very efficient because of its need to maintain a large 
population of solutions and this may consume several mega-
bytes of memory for the encoding of a single solution and thus 
not as good as SA in this regard. It would be impractical to 
manipulate a large population of candidate solutions using 
GA. Another problem frequently found in GA optimization is 
premature convergence. This is typically the result of the ex-
treme reliance on crossover. The dominance of crossover can 
result in stagnation as the population becomes more homoge-
neous, and the mutation rate is too low to move the search to 
other areas. 
Simulated Annealing (SA) is another algorithm which is popu-
lar in heuristic optimization. SA belongs to a class of algo-
rithms called probabilistic hill-climbing which dynamically alter 
the probability of accepting inferior solutions. The SA algo-
rithm is especially popular in the field of VLSI design where it 
has been successfully applied to the optimization of extremely 
high-dimensional problems which contain tens or hundreds of 
thousands of parameters to be optimized.  
 
Simulated annealing is a search strategy which keeps track of 
one feasible timetable. On each iteration, a neighbour is gener-
ated – another feasible timetable, slightly altered at random 
from the current one. This neighbour is accepted as the current 
timetable if it has a lower penalty. If the neighbour has a high-
er penalty, it may be accepted according to a probability 
which is related to a control parameter called temperature. 
The temperature, and thus the probability of inferior neigh-
bours being accepted, is decreased each iteration or (more 
usually) after a particular number of iterations (this number 
may be constant or it can increase as the temperature decreas-
es). The process is analogous to the cooling process in actual 
annealing.  One drawback with simulated annealing is that the 
cooling process can take a long time in order to achieve good 
results. 

A 
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However, SA obtains very good solutions, only if its parame-
ters are well tuned. SA requires an initial solution for solving 
NP complete, combinatorial and optimization problems for 
the resultant solution to be satisfactory and this is a major li-
mitation of the SA algorithm. Since neither of the two algo-
rithms seems to be universally preferred for all problems, re-
searchers have often resorted to building a large battery of 
optimization algorithms and finding, through experimenta-
tion, which tool satisfactorily fits the problem at hand. This 
provides the basic motivation for trying to merge GA and SA 
into a single algorithm or module, which can be designed and 
configured as the hybrid mode of GA and SA.  
In this paper, a new method that hybridizes genetic algorithm 
and simulated annealing algorithm (GA-SA Hybrid) is pro-
posed, designed and implemented for the automatic genera-
tion of tertiary institution examination time-tabling structure.  

2 REVIEW OF RELATED WORKS 

Several works have approached the timetabling problem. Oye-
leye [4] developed a SAGA hybrid algorithm by using the ini-
tial temperature and cooling rate of SA to control the opera-
tions of the GA. The hybrid system was evaluated using cer-
tain evaluation metrics including the program size, simulation 
time, program volume, program level, program effort and 
lines of code. The researcher concluded that the hybrid system 
developed returned feasible examination timetable that re-
sulted in best performance when compared with GA and SA 
models. Mushi [5] worked on simulated annealing algorithm 
for the examinations timetabling problem at University of Dar 
es salaam, based on a Simulated Annealing heuristic. Mushi 
was able to solve an existing problem and show that the au-
tomated system performs better and faster than the manually 
generated solution.  
Dimopoulou & Milliotis [6] reported a system which combines 
both Integer Programming and heuristic procedures for 
Athens University of Economics and Business. Several re-
searchers have attempted this problem using simulated an-
nealing including [7], [8]. Tabu search methods have also been 
used by many researchers such as [9], [10] and [11]. There are 
also researches on the use of evolutionary algorithms [12] and 
constraint satisfaction methods [13].  
A more thorough survey of Examinations timetabling prob-
lems is provided by [14]. Most of the papers however, are 
theoretical and only few present a practical implementation of 
the Examination timetable for specific Universities. Some of 
these few case studies include [7], [9] and [15]. 
Analyzing the results obtained by the various works pub-
lished, we can say that the automatic generation of schedules 
is capable of achieving. Some works showed that when com-
pared with the manually scheduled examination timetables in 
institutions of learning, the time tables obtained by the algo-
rithms for solving the examination timetabling problem are of 
better quality using some function of evaluation. 

3 MATERIALS AND METHOD 

3.1 Framework for the Examination Timetable  

The examination timetabling problem can be seen as consist-
ing of two subproblems:  

(1) Assigning timeslots to an examination  
(2) Assigning an examination to appropriate venues  

                     or theatres. 
The examination timetabling problem is subject to a variety of 
hard and soft constraints. Hard constraints need to be satisfied 
in order to produce a feasible solution.  
In this problem, in order for a timetable to be feasible, it is ne-
cessary that every exam event e1,…,en is assigned to exactly 
one room r1,…,rm and exactly one of t timeslots (where in all 
cases t ≤ 36, which is to be interpreted as twelve days of three 
timeslots), such that the following three hard constraints are 
satisfied: Constraints that will be considered include: 
 
3.1.1 Hard Constraints 

i.)       No student is required to attend more than one 
event at any one time (or, in other words, conflict-
ing exam events should not be assigned to the 
same timeslot); 

ii.)      All exam events are to be assigned to suitable 
rooms. That is, all of the features required by an 
exam event are satisfied by its room, which must 
also have an adequate seating capacity; 

iii.)       Only one exam event is assigned to any one 
room in any timeslot (i.e. no double-booking of 
rooms is allowed). 
 

3.1.2 Soft Constraints 
i.)      Candidates prefer to have at least one gap between.     
             In general, we would like to spread each candi 
             date examinations as much as possible within the 
             planning horizon. 
ii.)   Splitting of examinations into rooms must be 
              minimized as much as possible. This is done in 
              order to help departments in planning for 
              invigilators who are also scarce. 

 
3.2 Representation Model for the Exam Timetable 

Definition 

H - Set of all the periods of time within which examinations 
can occur.  where m corresponds to the max-
imum number of periods of time.  
 
Definition 

D - Set of all subjects, in a given season, that will be under ex-
amination. 

where k is the maximum number of sub-
jects, in a given season will be under examination.  
 
3.3 Objective Function 

This is represented as a weighted linear combination of func-
tions associated with all constraints in the problem. For faster 
execution, it has been observed that it is better to include hard 
constraints as well in the objective function and assign higher 
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weight to their functions.  
Thus, given a solution x, and a set of h constraints, we minim-
ize the function; 

                                 (x)                               

(1)  
where fi = function associated with constraint i and i= weight 
given to constraint i which represents the importance of the 
constraint to the overall performance measure of the solution. 
 
3.4 Constraint Functions 

i.) A candidate can have at most one examination at the 
same timeslot; Two examinations i and j have a can-
didate clash if they have been allocated to the same 
timeslot (i.e. si = sj) and mij = 1. We need a function to 
count the number of these clashes whenever they ap-
pear in a particular solution and aim at minimizing 
them. 
Let A = Set of all pairs of examinations (i,j) є E with      
i < j such that si=sj, and define fi(s) = , 
then minimize ifi(s) fi (s) gives the total number of 
candidate clashes associated with the current solu-
tion, and therefore fi (s) = 0 is a necessary condition 
for a feasible solution. Since this is a hard constraint, 

i must be a sufficiently large value. 
 

ii.) Room capacities must not be violated; 

A room cannot be allocated to more candidates than 
its capacity in any time slot. In this case we need a 
function to count the number of times that the con-
straint is violated. That is, calculate the number of 
times that a room has been assigned more candidates 
than its capacity. Let Bit = a set of examinations as-
signed to room i at timeslot t, then the remaining ca-
pacity of room i in time t is given by                                                    

 

                                                      f                                                                      

(2) 
 
For feasibility, the capacity of room i must be ≥ 0.   
Also let   

                            

for some room i.  
Then the function is  

                                          ,                                  

(3) 

and minimize 2f2(s), where 2 is a large value. Since 
f2(s) is the total number of rooms with an overflow of 
candidates, then the condition f2(s) = 0 must be satis-
fied for a feasible solution. 

 

iii.) Minimal number of examination splits into separate rooms; 

This is achieved by simply minimizing the maximum size of ki. 

Thus, the function f3(S) = maxiєE{|ki|} is minimized to 3f3(s) 
where 3 is a weight value.  
 
 
The general algorithm is demonstrated by the following pseu-
docode; 

Initial_Examination_Timetable 
Phase 1 
For each examination c slotted = Assign timeslot and room 
to examination c 
if Not slotted 
Put in the list U of unslotted examinations 
Next c 
Phase 2 
For each unslotted examination uєU 
Assign portions of u into the emptiest space until all is 
scheduled.  
If infeasible assign to the closest feasible timeslot. 
Next u 
End_Initial_Timetable 

 
3.5 A Framework for the Hybrid GA-SA Algorithm 

At the point of convergence of the evaluation function of both 
the GA and SA comes the integration and model design of the 
hybrid using certain features. Two solutions are selected with 
a decreasing probability of selecting less-fitted feature solu-
tions. In order to decrease the probability of selecting less-
fitted features, the fitness evaluation function is changed to the 
following: 
                       fi = (DMAX - Di)

α×t                                                                            (4) 

where t is the number of iterations or generations. As the 
number of generation increases, the fitness value would in-
crease and induce the algorithm to choose better-fitted solu-
tions. The mutation rate would decrease as the number of 
generations grows.  
This is formulated as follows:  

                                        Cm = 1 – t / tmax                                    (5) 
where t is the number of iterations or generations that the al-
gorithm has gone through and tmax is the maximum number of 
generations. 
If the produced offspring is less-fitted than the worst solution 
in the population, it would replace the worst solution only 
when the probability         
                                       δ ≤ e 

(-ΔE /T)  is met. 
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Fig. 1. Flow of GA 
 

 

Fig. 2. Flow of SA 

 

 

Fig. 3. Flow of hybrid of GA and SA 
 

 

 

3.6 Simulation Parameters 
3.6.1 Violations of the Examination Timetabling  
Course clashing, venue capacity, venue with lab equipment, 
list of courses, total number of students per course, list of ve-
nues and capacity of venues 
 
3.6.2 Parameters for GA-SA 
Number of generations = 1000, size of population = 100, 
chromosome length = 54 (54 timeslots in a week), mutation 
probability = 0.1, crossover probability = 0.7, Length of mar-
kov chain = 10000, maximum temperature = 100, alpha = 0.95, 
freezing point = 0.1. 
 
3.7 Implementation Tool 
The programming tool used to implement the algorithms is 
MATLAB. This is because MATLAB is a very powerful com-
puting system for handling the calculations involved in scien-
tific and engineering problems. The name MATLAB stands for 
MATrix LABoratory. With MATLAB, computational and 
graphical tools to solve relatively complex science and engi-
neering problems can be designed, developed and imple-
mented. The timetabling problem follows LAUTECH timeta-
ble dataset format and will be used to evaluate the perfor-
mance of the developed hybrid GA-SA system. 

4 RESULTS AND DISCUSSION 

From the summary of the results obtained from the simula-
tion, simulated annealing algorithm performs better than both 
the genetic algorithm and the hybrid GA-SA algorithm in 
terms of optimality of output generated.  
However, simulation results showed that simulated annealing 
algorithm spends a more considerable time to generate the 
timetable than the other two algorithms which accounts for 
the optimality of the timetable generated as almost all hard 
constraints are satisfied.   
The genetic algorithm on the other hand spends a lesser time 
than the simulated annealing algorithm during the generation 
process but does that by violating some hard constraints. 
As computing resource is very expensive, there occurs a need 
to reduce the time and space complexities inherent in the use 
of algorithms, hence a need for a more time-enhanced algo-
rithm which came as the hybrid GA-SA algorithm. The hybrid 
GA-SA, though violated some hard constraints as observed in 
the GA result also, executes with reduced time for generating 
the output. It is the most efficient algorithm in terms of time 
and space complexities and computing resource management 
though optimality of result is not guaranteed. However, the 
simulated annealing algorithm consumes a lot of computing 
resource but ensures optimality of output generated.  
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Fig. 4. Hybrid GA-SA during execution 

 

Fig. 5. Hybrid GA-SA Execution Completion 
 

 

Fig. 6. GA Timetable Generated 

 

Fig. 7. SA Timetable Generated 
 

 

 

Fig. 8. Hybrid GA-SA Timetable Generated 
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TABLE 1 
SUMMARY OF RESULTS OBTAINED 

 

5 CONCLUSION 

As computing resources become very expensive, there 
arises a need to reduce the time and space complexities 
inherent in the use of algorithms, hence a need for a more 
time and spaced-enhanced algorithm which came as the 
hybrid GA-SA algorithm as proposed in this study. Simu-
lated annealing and genetic algorithm have been success-
fully used for solving the examination timetabling prob-
lem. However, the results generated indicates a very high 
consumption of computing resources by simulated an-
nealing but with high optimality while genetic algorithm 
results showed that though the consumption of compu-
ting resources is reduced yet the two algorithms still con-
sume a considerable part of the computing resources.  
This study designed a hybrid GA-SA algorithm which 
presents an output with a well minimized utilization of 
computing resources. A performance evaluation was car-
ried out among the three algorithms. The result of the 
evaluation revealed that in terms of optimality of result 
without taking cognizance of the time and space complex-
ities, simulated annealing is the best of the three. In addi-
tion, based on computing resource management, the hybr-
id GA-SA algorithm is the best of the three algorithms 
under such consideration. 
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